BP: MMATH LINEAR ALGEBRA

All vector spaces considered below are assumed to be finite dimensional.

- (1) (14+14=28 points) Answer the following multiple choice questions about each of them. Justify your answer.
 - (a) Let R be a ring and $0 \to A \to B \to C \to 0$ be a short exact sequence of R-modules. Let M be a R-module. The sequence

$$0 \to Hom_R(M,A) \to Hom_R(M,B) \to Hom_R(M,C) \to 0$$

is exact if

- (i) M is a projective R-module.
- (ii) A is a projective R-module.
- (iii) B is a projective R-module.
- (iv) C is a projective R-module.
- (b) Let R be a principal ideal domain. Which of the following are true.
 - (i) Every submodule of a free R-module is torsion free.
 - (ii) Every torsion free submodule of a finitely generated R-module is free.
 - (iii) Every torsion free R-module is free.
 - (iv) Every ideal of R is a free R-module.
- (2) (8+8+8=32 points) Prove or disprove (using a counterexample) the following statements.
 - (a) Let ϕ and ψ be two commuting diagonalizable linear operators on a finite dimensional vector space V. Then ϕ and ψ are simultaneously diagonalizable.
 - (b) Let A and B be $n \times n$ matrices such that minimal polynomial of A and B are equal and has degree n. Then A and B are similar matrices.
 - (c) Let R be an integral domain and M be a finitely generated torsion free R-module then M is a free R-module.
 - (d) Let R be a commutative and M be an R-module. Let $\phi: M \to M$ be an R-linear map. Then ϕ extends to a R-algebra homomorphism from the tensor algebra T(M) to the symmetric algebra S(M).

- (3) (15 points) Let A be a $n \times n$ hermitian matrix. Then show that $\exp(A)$ is a non-negative operator on the hermitian space \mathbb{C}^n with the standard hermitian form.
- (4) (15 points) Compute and list down rational canonical form and Jordan form of all the 4×4 real matrices whose minimal polynomial is $x^2 9$.
- (5) (10 points) Let R be an integral domain and M be an R-module. Let m_1, \ldots, m_n be generators of M as an R-module. Suppose there exist elements $\phi_1, \ldots, \phi_n \in Hom_R(M, R)$ such that $\phi_i(m_i) \neq 0$ for all i and $\phi_i(m_j) = 0$ for all $i \neq j$. Show that (m_1, \ldots, m_n) is a basis of M and (ϕ_1, \ldots, ϕ_n) is a linearly independent subset of $Hom_R(M, R)$.